Progress towards a Bose-Einstein condensate of CaF molecules

C. Volk, A. Chakraborty, C. J. Ho, J. Wu, B. E. Sauer, S. Truppe, M. R. Tarbutt

Centre for Cold Matter, Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ, United Kingdom

Ultracold molecules have been emerging as a new platform for quantum many body physics due to their strong and tunable dipole-dipole interactions. Recent successes were achieved with associated molecules where ensembles of fermions [1, 2] or bosons [3] reached quantum degeneracy. This has not been achieved for directly laser cooled molecules. A challenge so far has been to achieve high enough number densities for evaporative cooling to function.

We report on our progress towards realising a high-density cloud of CaF molecules in a blue-detuned magnetooptical trap [4, 5, 6, 7, 8]. Afterwards, we plan to load the molecules into an optical dipole trap and perform evaporative cooling in the presence of a resonant electric field which shields the molecules from 2-body collisional loss [9].

References

- [1] L. De Marco et al., Science 363, 853-856 (2019)
- [2] A. Schindewolf et al., Nature 607, 677-681 (2022).
- [3] N. Bigagli et al., Nature 631, 289–293 (2024).
- [4] J. J. Burau et al., Phys. Rev. Lett. 130, 193401 (2023).
- [5] V. Jorapur et al., Phys. Rev. Lett. 132, 163403 (2024).
- [6] S. J. Li et al., Phys. Rev. Lett. 132, 233402 (2024).
- [7] C. Hallas et al., arXiv:2404.03636 (2024).
- [8] S. S. Yu et al., arXiv:2409.15262 (2024).
- [9] B. Mukherjee et al., Phys. Rev. Res. 5, 033097 (2023).