Fermi surface deformations and collective modes in ultracold polar molecules

<u>Christine Frank 1,2,†</u>, Shrestha Biswas 1,2, Sebastian Eppelt 1,2, Weikun Tian 1,2, Immanuel Bloch 1,2,3, and Xinyu Luo 1,2

¹Max-Planck-Institute of Quantum Optics, Hans-Kopfermann-Straße 1, 85748 Garching, Germany ²Munich Center for Quantum Science and Technology, Schellingstraße 4, 80799 München, Germany ³Faculty of Physics, Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany [†] corresponding author's email: christine.frank@mpq.mpg.de

Ultracold polar molecules possess strong electric dipole moments, providing a powerful platform for exploring exotic quantum many-body phenomena. When dressed with microwave fields, the dipole-dipole interactions can be tuned in terms of amplitude, sign, and spatial orientation [1, 2]. In degenerate Fermi gases, this consequently leads to dipolar many-body phenomena such as Fermi surface deformation [3, 4, 5] and collective excitations in the hydrodynamic regime [6, 7].

In this poster, we present our method to use a dual-color microwave scheme to enable full three-dimensional control of the intermolecular interaction [8] on our platform of ultracold fermionic NaK molecules, routinely creating a deeply degenerate dipolar Fermi gas at $0.25 T/T_F$. We developed a systematic method to investigate the Fermi surface deformation and excitation of collective modes of the dipolar Fermi gas, enabling the quantitative analysis of dipolar many-body behavior across different interaction regimes set by the microwave field parameters.

This work sets the foundation for investigating the equilibrium properties and elementary excitations of dipolar fermionic many-body systems via polar molecules.

Acknowledgments

Theoretical calculations and simulations have been carried out by Wei Zhang, Fulin Deng, and Tao Shi (Institute of Theoretical Physics, Chinese Academy of Sciences).

References

- [1] A. Schindewolf et al., Nature 607, 677-681 (2022).
- [2] F. Deng et al., Phys. Rev. Lett. 130, 183001 (2023).
- [3] T. Miyakawa, T. Sogo, and H. Pu, Phys. Rev. A 77, 061603 (2008).
- [4] V. Veljić et al., New J. Phys. 20, 093016 (2018).
- [5] V. Veljić, A. Pelster, and A. Balaž, Phys. Rev. Res. 1, 012009 (2019).
- [6] A. Altmeyer, Collective Oscillations in Ultracold Fermi Gases, Ph.D. thesis, University of Innsbruck (2007).
- [7] A. Altmeyer et al., Phys. Rev. Lett. 98, 040401 (2007).
- [8] N. Bigagli et al., Nature 631, 289–293 (2024).