Collisions in a quantum gas of bosonic ²³Na³⁹K molecules

M. Meyer zum alten Borgloh¹, J. Heier¹, <u>F. von Gierke^{1, †}</u>, P. Gersema¹, K.K. Voges², C. Karam³, L. Karpa¹, O. Dulieu³, S. Ospelkaus¹

¹Leibniz Universität Hannover, Institut für Quantenoptik, Germany
²Centre for Cold Matter, Blackett Laboratory, Imperial College London, United Kingdom
³Université Paris-Saclay, CNRS, Laboratoire Aimé Cotton, France
†corresponding author's email: gierke@iqo.uni-hannover.de

We present our experiments with quantum gases of polar ²³Na³⁹K molecules, discussing both atom-molecule and molecule-molecule collisions, as well as methods to obtain collisional control.

First, we study collisions between NaK and K in different hyperfine states [1] and share our observations of magnetically tunable resonances in these ensembles. Secondly, we focus on molecule-molecule collisions. Although 23 Na³⁹K is chemically stable against the exchange reaction 2NaK \rightarrow Na₂ + K₂, the ensemble undergoes universal two-body loss. We investigate the origin of this molecular loss [2] and outline an alternative method for its suppression, namely two-photon optical shielding [3], which could replace previously demonstrated methods such as microwave shielding. The concept utilizes a coherent two-photon transition to create a potential barrier, which prevents the colliding molecules from reaching short range where interactions of the two molecules can lead to loss. Working at the point of the two-photon resonance $\delta = 0$ should simultaneously prevent additional scattering loss by the shielding light in the long range. Lastly, we discuss the experimental implementation of this method.

References

[1] K. K. Voges, P. Gersema, T. Hartmann, S. Ospelkaus, and A. Zenesini, Phys. Rev. Research 4, 023184 (2022).

- [2] P. Gersema, K. K. Voges, J. Lin, J. He et al., Phys. Rev. Lett. 127, (2021).
- [3] C. Karam et al., Phys. Rev. Research 5, 033074 (2023).